Chonghui Cheng, M.D., Ph.D.
Chonghui Cheng, M.D., Ph.D.
Baylor College of Medicine
Titles & Positions

  • Associate Professor

Institutional & Related Links

Profile

Biography

Grant Information

Grant ID: RR160009
Grant Mechanism: 
Recruitment of Rising Stars
Recruited From: 
Northwestern University Feinberg School of Medicine
Date Awarded: 
September 10, 2015
Grant Amount: 
$4,000,000

Many genes in the human body have the ability to code for more than one protein, giving cells a large degree of flexibility to adapt to changing conditions. When this happens in cancer cells, it gives them the ability to morph in response to external cues, in order to metastasize or even escape toxic chemotherapy.

This inherent plasticity of cancer cells is one reason cancer is so difficult to eradicate. But now a scientist at Baylor College of Medicine, Dr. Chongui Cheng, M.D., Ph.D., is studying this process, called RNA splicing, in an effort to find ways to inhibit cancer’s flexibility. Dr. Cheng was recruited in 2016 from Northwestern University School of Medicine with the help of a Rising Star Award from CPRIT.

Alternative splicing is a way that human cells can make many different proteins from one gene. It’s an ability that 95% of human cells have, but organisms like yeast – which have a similar number of genes – lack.

DNA in a gene is transcribed to a pre-messenger-RNA, which is then spliced to create messenger RNA—the genetic material that ultimately codes for proteins. Splicing factors dictate which portions of the pre-mRNA are cut out or included to code for the desired protein. The resulting proteins can have very different functions within a cell, even though they are originally encoded by the same gene.

In a cancer cell, alternative splicing of a gene called CD44 is the key to its ability to change into a cell that can escape from the primary tumor site and undergo metastasis. “If we are able to understand the regulation of alternative splicing, we could develop new therapeutic strategies to stop the spread of tumors,” Dr. Cheng says.

In breast cancer, Dr. Cheng found that one spliced form of the protein encoded by the gene CD44 is closely coupled with a cancer cell’s survival mechanism, metastasis, and chemotherapy resistance.

Read More